

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

<u>ÍNDICE</u>

1.	Objetivo	Página 1
2.	Fundamento teórico	Página 1 y 2
3.	Materiales	Página 2
4.	Reactivos	Página 2
5.	Equipos	Página 2
6.	Procedimiento experimental	Página 3 y 4
7.	Diagrama de flujo	Página 4
8.	Datos primarios	Página 5
9.	Resultados/gráficas y cálculos	Página 5, 6, 7, 8 y 9
10.	Conclusiones	Página 10

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 1
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

1.- OBJETIVO:

- El objetivo de la práctica es aprender a determinar el contenido de ácido acetilsalicílico en un fármaco, mediante una volumetría de retroceso ácido-base con detección del punto final a través de un indicador químico, mediante una valoración conductimétrica y mediante cromatografía.
- Verificar que el contenido de AAS en el fármaco se corresponde al valor promedio de los resultados alcanzados en el análisis.

2.-FUNDAMENTO TEÓRICO:

La aspirina es un medicamento de múltiples acciones terapéuticas comprobadas como analgésico, antiinflamatorio, antifebril, protector vascular, dado su poder germicida, también se usa en champú y aceites destinados a combatir enfermedades de la piel. Su principio activo es el ácido acetilsalicílico (AAS, C₉H₈O₄) es un sólido blanco, cuyo punto de fusión es de 135°C, su masa molar es 180 g/mol, que es un éster de ácido acético y ácido salicílico (este último actúa como alcohol) que se obtiene mediante la siguiente reacción de esterificación:

La aspirina generalmente se suministra en tabletas de 100 y 500mg de ácido acetilsalicílico, después de ingerirla, se llega a una concentración máxima en la sangre en aproximadamente 1 o 2 horas, y ésta se hidroliza tanto en la sangre como en el hígado. El ácido acetilsalicílico es la forma activa de este medicamento, sin embargo, éste no se puede ingerir directamente, puesto que el grupo fenólico de la molécula irrita el tracto digestivo.

En esta práctica se determinará el contenido de AAS basándonos en la hidrólisis que sufre el grupo éster en medio alcalino:

HO C
$$CH_3$$
 (aq) + NaOH (aq) N_a^+ O CH_3 (aq) + H₂O (l)

Figura 3. Reação de neutralização entre ácido acetilsalicílico (AAS) e hidróxido de sódio (NaOH).

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 2
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

Con el fin de conseguir que la reacción sea rápida y completa, se añade un exceso de disolución patrón de base fuerte (NaOH), se hierve para acelerar la hidrólisis, y después de enfriar, se valora el exceso de base con una disolución patrón de HCl.

3.-MATERIAL:

- Soporte para bureta.
- Bureta.
- Matraz Erlenmeyer.
- Vasos de precipitados.
- Embudos pequeños.
- Espátula.
- Mortero de vidrio.
- Pipeta aforada (25mL).
- Probeta.
- Agua destilada.

4.-REACTIVOS:

- Disolución de NaOH 0,1M.
- Disolución de HCl 0,1M.
- Fenolftaleína.

5.-EQUIPOS:

- Conductímetro.
- Balanza analítica.
- Agitador magnético.
- Manta calefactora.

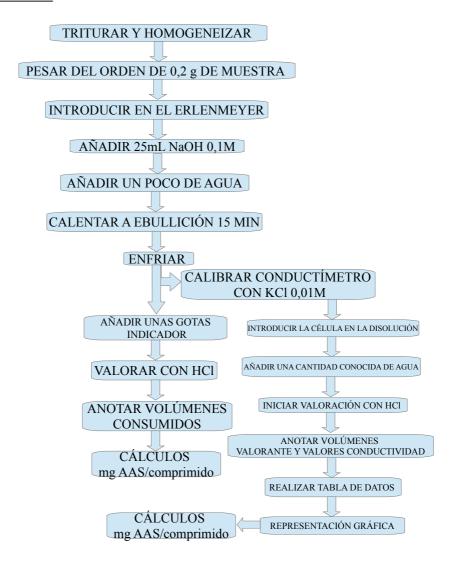
IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 3
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

6.-PROCEDIMIENTO EXPERIMENTAL:

> Valoración clásica:

- Pesar 3 comprimidos, para conocer el peso medio por comprimido.
- Triturar y homogeneizar los comprimidos en un mortero de vidrio.
- Pesar del orden de 0,2 g de la muestra, en balanza analítica. Introducir la cantidad que se ha pesado en un matraz Erlenmeyer de 250mL.
- Medir con pipeta aforada 25mL de NaOH 0,1M factorizado y añadirlo al Erlenmeyer.
- Añadir hasta 100mL de agua destilada.
- Calentar a ebullición durante 15 minutos.
- Hay que tener en cuenta una serie de precauciones:
 - a) Evitar el calentamiento excesivo porque podría provocar una carbonización de la muestra que se observará por la coloración amarilla de la disolución.
 - b) Reponer el agua que se evapora.
 - c) Colocar un embudo en la boca del matraz Erlenmeyer para evitar posibles salpicaduras y reducir la evaporación del agua.
- Dejar enfriar la disolución.
- Añadir unas gotas de indicador y comenzar la valoración con el ácido factorizado.
- Anotar los volúmenes gastados de valorante.
- Calcular los miligramos de ácido acetilsalicílico por comprimido y el % en peso.

Valoración conductimétrica:


- Realizar todos los pasos anteriores pero esta vez la valoración se llevará a cabo con un conductímetro.
- Antes de realizar la valoración se tiene que calibrar el equipo mediante una disolución patrón de KCl 0,01M tal y como indican las instrucciones del conductímetro que se vaya a emplear.
- Una vez que el equipo esta calibrado se procede a realizar la valoración.
- Introducir la célula del conductímetro en el interior del vaso que contiene la muestra, de forma que quede sumergida un 50% de su longitud pero sin llegar al fondo para evitar que llegue a tocar al agitador magnético.
- Añadir una cantidad conocida de agua destilada.
- Iniciar la adición de valorante (HCl) sobre la disolución problema.
- Adicionar 1mL de valorante, después de cada adición se mide la conductividad de la disolución.
- Anotar los volúmenes de valorante añadidos y los correspondientes valores de conductividad.
- Realizar una tabla como la siguiente:

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 4
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

VALORANTE (mL)	K MEDIDA (μS/cm)	K CORREGIDA (μS/cm)
1		
2		

• Realizar una representación gráfica con los datos obtenidos para determinar los puntos de equivalencia. Valorante (eje X) y K_{corregida} (eje Y).

7.-DIAGRAMA DE FLUJO:

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 5
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

8.-DATOS PRIMARIOS:

Peso de 3 comprimidos de 500mg (gramos)	2,555	
Peso por comprimido (gramos)	0,8516666667	

Valoración clásica	Muestra 1 (gramos)	0,2009
	Muestra 2 (gramos)	0,2011
	Muestra 3 (gramos)	0,2010
Valoración conductimétrica	Muestra 1 (gramos)	0,2014
valoración conductimetrica	Muestra 2 (gramos)	0,2030

	Molaridad
NaOH (1L)	0,0884652418
HCI (1L)	0,1040579279

9.-RESULTADOS/GRÁFICAS Y CÁLCULOS:

> Valoración clásica

	V _{HCI(exceso)} (mL)	V _{NaOH(necesario+exceso)} (mL)	Peso _{muestra} (g)
Valoración 1	7,9	25	0,2009

$$\begin{split} &moles~NaOH_{totales}=moles~NaOH_{AAS}+moles~NaOH_{HCl}~;\\ &0'025*0'0885=moles~NaOH_{AAS}+0'0079*0'1041~;\\ &moles~NaOH_{AAS}=1'3895*10^{-3}~moles~NaOH_{AAS} \end{split}$$

1'3895*10⁻³ moles NaOH_{AAS} * (1 mol AAS / 2 moles NaOH_{AAS}) * (180'16 gramos AAS / 1 mol AAS) = 0'1252 g AAS

 $(0'1252g \text{ AAS} / 0.2009g \text{ AAS}) * (0.8517g / \text{comprimido}) * (10^3 \text{ mg} / \text{g}) = 530'6395 \text{ mg AAS/comprimido}$

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 6
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

	V _{HCI(exceso)} (mL)	V _{NaOH(necesario+exceso)} (mL)	Peso _{muestra} (g)
Valoración 2	8	25	0,2011

$$\begin{split} & moles~NaOH_{totales} = moles~NaOH_{AAS} + moles~NaOH_{HCl}~;\\ & 0'025*0'0885 = moles~NaOH_{AAS} + 0'008*0'1041~;\\ & moles~NaOH_{AAS} = 1'3792*10^{-3}~moles~NaOH_{AAS} \end{split}$$

1'3792*10⁻³ moles NaOH_{AAS} * (1 mol AAS / 2 moles NaOH_{AAS}) * (180'16 gramos AAS / 1 mol AAS) = 0'1242 g AAS

 $(0'1242g \text{ AAS} / 0'2011g \text{ AAS}) * (0'8517g / \text{comprimido}) * (10^3 \text{ mg} / \text{g}) = 526'1420 \text{ mg AAS/comprimido}$

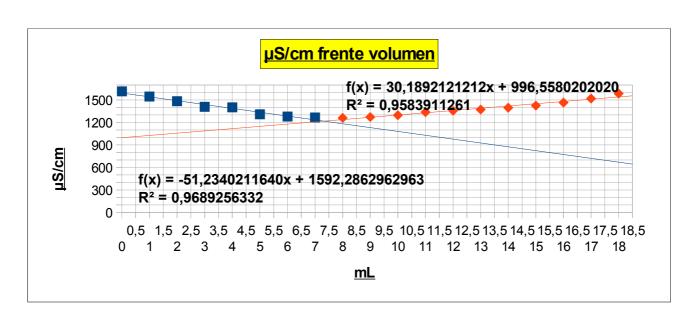
	V _{HCI(exceso)} (mL)	V _{NaOH(necesario+exceso)} (mL)	Peso _{muestra} (g)
Valoración 3	7,9	25	0,2010

$$\begin{split} &moles~NaOH_{totales} = moles~NaOH_{AAS} + moles~NaOH_{HCl}~;\\ &0'025*0'0885 = moles~NaOH_{AAS} + 0'0079*0'1041~;\\ &moles~NaOH_{AAS} = 1'3895*10^{-3}~moles~NaOH_{AAS} \end{split}$$

1'3895*10⁻³ moles NaOH_{AAS} * (1 mol AAS / 2 moles NaOH_{AAS}) * (180'16 gramos AAS / 1 mol AAS) = 0'1252 g AAS

 $(0'1252g \text{ AAS} / 0'2010g \text{ AAS}) * (0'8517g / \text{comprimido}) * (10^3 \text{ mg} / \text{g}) = 530'3756 \text{ mg AAS/comprimido}$

Media: 529'0523 mg/comprimido Error relativo: 5'8104%


 529 ± 5 mg/comprimido El comprimido presenta un 105'81% de AAS respecto a los datos que se establecen en el prospecto.

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 7
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

> Valoración conductimétrica

o Primera valoración

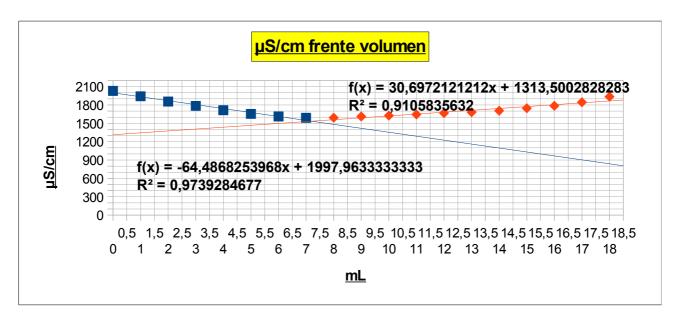
Volumen Hcl (mL)	k _{medida} (μS/cm)	F _d	k _{corregida} (μS/cm)
0	1615	1	1615
1	1538	1,0044444444	1544,835555556
2	1469	1,0088888889	1482,0577777778
3	1390	1,0133333333	1408,5333333333
4	1376	1,0177777778	1400,4622222222
5	1280	1,022222222	1308,444444445
6	1245	1,0266666667	1278,2
7	1228	1,0311111111	1266,204444445
8	1217	1,035555556	1260,2711111111
9	1223	1,04	1271,92
10	1241	1,0444444444	1296,155555556
11	1275	1,0488888889	1337,3333333333
12	1287	1,0533333333	1355,64
13	1297	1,0577777778	1371,9377777778
14	1314	1,062222222	1395,76
15	1335	1,0666666667	1424
16	1367	1,0711111111	1464,2088888889
17	1411	1,075555556	1517,6088888889
18	1467	1,08	1584,36

Punto de intersección entre las dos rectas 7,316440923

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 8
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

	V _{HCI(exceso)} (mL)	V _{NaOH(necesario+exceso)} (mL)	Peso _{muestra} (g)
Valoración 1	7,316440923	25	0,2014

$$\begin{split} &moles~NaOH_{totales} = moles~NaOH_{AAS} + moles~NaOH_{HCl}~;\\ &0'025*0'0885 = moles~NaOH_{AAS} + 0'0073*0'1041~;\\ &moles~NaOH_{AAS} = 1'4520*10^{-3}~moles~NaOH_{AAS} \end{split}$$


 $1'4520*10^{-3}$ moles NaOH_{AAS} * (1 mol AAS / 2 moles NaOH_{AAS}) * (180'16 gramos AAS / 1 mol AAS) = 0'1306 g AAS

 $(0'1306g \text{ AAS} / 0'2014g \text{ AAS}) * (0'8517g / \text{comprimido}) * (10^3 \text{ mg} / \text{g}) = 552'4534 \text{ mg AAS/comprimido}$

o Segunda valoración

Volumen Hcl (mL)	k _{medida} (µS/cm)	F _d	k _{corregida} (μS/cm)
0	2030	1	2030
1	1933	1,0044444444	1941,5911111111
2	1839	1,0088888889	1855,3466666667
3	1761	1,0133333333	1784,48
4	1683	1,0177777778	1712,92
5	1618	1,022222222	1653,955555556
6	1569	1,0266666667	1610,84
7	1541	1,0311111111	1588,942222222
8	1537	1,035555556	1591,6488888889
9	1549	1,04	1610,96
10	1556	1,0444444444	1625,155555556
11	1568	1,0488888889	1644,6577777778
12	1582	1,0533333333	1666,3733333333
13	1590	1,0577777778	1681,8666666667
14	1606	1,062222222	1705,9288888889
15	1637	1,066666667	1746,13333333333
16	1667	1,0711111111	1785,5422222222
17	1715	1,075555556	1844,5777777778
18	1792	1,08	1935,36

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 9
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

Punto de intersección entre las dos rectas 7,1909436535

	V _{HCI(exceso)} (mL)	V _{NaOH(necesario+exceso)} (mL)	Peso _{muestra} (g)
Valoración 2	7,1909436535	25	0,2030

$$\begin{split} & moles~NaOH_{totales} = moles~NaOH_{AAS} + moles~NaOH_{HCl}~;\\ & 0'025*0'0885 = moles~NaOH_{AAS} + 0'0072*0'1041~;\\ & moles~NaOH_{AAS} = 1'4634*10^{-3}~moles~NaOH_{AAS} \end{split}$$

1'4634*10⁻³ moles NaOH_{AAS} * (1 mol AAS / 2 moles NaOH_{AAS}) * (180'16 gramos AAS / 1 mol AAS) = 0'1318 g AAS

 $(0'1318g \text{ AAS} / 0'2030g \text{ AAS}) * (0'8517g / \text{comprimido}) * (10^3 \text{ mg} / \text{g}) = 553'0343 \text{ mg AAS/comprimido}$

Media: 552'7438 mg/comprimido Error relativo: 10'5488%

553 ± 10 mg/comprimido El comprimido presenta un 110'55% de AAS respecto a los datos que se establecen en el prospecto.

IES Vicent Castell i Doménech	Análisis instrumental	PNT 9-Página 10
Ciclo formativo: Análisis y control de calidad	DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.	Curso: 2014/2015

10.-CONCLUSIONES:

- Hemos aprendido a determinar el contenido de ácido acetilsalicílico en un fármaco, mediante una volumetría de retroceso ácido-base con detección del punto final a través de un indicador químico, mediante una valoración conductimétrica, la parte de cromatografía no la hemos podido realizar ya que no contamos con los materiales necesarios, este estudio lo realizaremos cuando hagamos una visita programada a la UJI, en la cual podremos comprobar como se utiliza un cromatógrafo y posteriormente podremos aplicar los principios de esta técnica a la determinación del ácido acetilsalicílico de un fármaco.
- Hemos podido verificar que el contenido de AAS en el fármaco da un valor un poco mayor de lo que viene indicado en el fármaco. En la parte de la valoración clásica nos ha dado 529 mg/comprimido (lo que supone una riqueza de AAS del 105'81% por comprimido), y en la parte de la valoración conductimétrica nos ha dado 552'03 mg/comprimido (lo cual supone una riqueza de AAS del 110'55% por comprimido).